Entropic latent variable integration via simulation
نویسندگان
چکیده
This paper introduces a general method to convert a model defined by moment conditions involving both observed and unobserved variables into equivalent moment conditions involving only observable variables. This task can be accomplished without introducing infinite-dimensional nuisance parameters using a least-favorable entropy-maximizing distribution. We demonstrate, through examples and simulations, that this approach covers a wide class of latent variables models, including some game-theoretic models and models with limited dependent variables, interval-valued data, errors-in-variables, or combinations thereof. Both pointand set-identified models are transparently covered. In the latter case, the method also complements the recent literature on generic set-inference methods by providing the moment conditions needed to construct a GMM-type objective function for a wide class of models. Extensions of the method that cover conditional moments, independence restrictions and some state-space models are also given.
منابع مشابه
Learning Multi-Sensory Integration with Self-Organization and Statistics
Recently, we have presented a self-organized artificial neural network algorithm capable of learning a latent variable model of its high-dimensional input and to optimally integrate that input to compute and population-code a probability density function over the values of the latent variables of that model. We did take our motivation from natural neural networks and reported on a simple experi...
متن کاملComputationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models
Multilevel analysis often leads to modeling with multiple latent variables on several levels. While this is less of a problem with Gaussian observed variables, maximum-likelihood (ML) estimation with categorical outcomes presents computational problems due to multidimensional numerical integration. We describe a new method that compared to ML is both computationally efficient and has similar MS...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملProbabilistic Latent Variable Model for Sparse Decompositions of Non-negative Data
An important problem in data-analysis tasks is to find suitable representations that make hidden structure in the data explicit. In this paper, we present a probabilistic latent variable model that is equivalent to a matrix decomposition of nonnegative data. Data is modeled as histograms of multiple draws from an underlying generative process. The model expresses the generative distribution as ...
متن کاملSparse Overcomplete Latent Variable Decomposition of Counts Data
An important problem in many fields is the analysis of counts data to extract meaningful latent components. Methods like Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA) have been proposed for this purpose. However, they are limited in the number of components they can extract and lack an explicit provision to control the “expressiveness” of the extracted comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013